Simplicity of skew generalized power series rings
نویسندگان
چکیده
A skew generalized power series ring R[[S, ω]] consists of all functions from a strictly ordered monoid S to a ring R whose support contains neither infinite descending chains nor infinite antichains, with pointwise addition, and with multiplication given by convolution twisted by an action ω of the monoid S on the ring R. Special cases of the skew generalized power series ring construction are skew polynomial rings, skew Laurent polynomial rings, skew power series rings, skew Laurent series rings, skew monoid rings, skew group rings, skew Mal’cev–Neumann series rings, the “untwisted” versions of all of these, and generalized power series rings. In this paper we obtain necessary and sufficient conditions on R, S and ω such that the skew generalized power series ring R[[S, ω]] is a simple ring. As particular cases of our general results we obtain new theorems on skew monoid rings, skew Mal’cev–Neumann series rings and generalized power series rings, as well as known characterizations for the simplicity of skew Laurent polynomial rings, skew Laurent series rings and skew group rings.
منابع مشابه
ON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS
Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...
متن کاملNilpotent Elements in Skew Polynomial Rings
Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...
متن کاملPartial Skew generalized Power Series Rings
In this paper, using generalized partial skew versions of Armendariz rings, we study the transfer of left (right) zip property between a ring R and partial skew generalized power series rings
متن کامل$k$-power centralizing and $k$-power skew-centralizing maps on triangular rings
Let $mathcal A$ and $mathcal B$ be unital rings, and $mathcal M$ be an $(mathcal A, mathcal B)$-bimodule, which is faithful as a left $mathcal A$-module and also as a right $mathcal B$-module. Let ${mathcal U}=mbox{rm Tri}(mathcal A, mathcal M, mathcal B)$ be the triangular ring and ${mathcal Z}({mathcal U})$ its center. Assume that $f:{mathcal U}rightarrow{mathcal U}$ is...
متن کاملNoetherian Skew Inverse Power Series Rings
We study skew inverse power series extensions R[[y−1; τ, δ]], where R is a noetherian ring equipped with an automorphism τ and a τ -derivation δ. We find that these extensions share many of the well known features of commutative power series rings. As an application of our analysis, we see that the iterated skew inverse power series rings corresponding to nth Weyl algebras are complete, local, ...
متن کامل